【金融学院学术沙龙第5期】:高光远:Predicting the unpaid claims using a Bayesian basis expansion model and Hamiltonian Monte Carlo method

pubdate:2016-04-25views:134



题目:Predicting the unpaid claims using aBayesian basis expansion model and Hamiltonian Monte Carlo method

报告人:高光远, 澳洲国立大学 商学院

时间:2016年4月27日下午1:30-3:00

地点:博萃楼会议室317

论文:学院内网

【摘要】We propose a Bayesian basis expansion modelwhich uses a natural cubic B-spline basis with knots placed at everydevelopment year to estimate the outstanding unpaid claims liability. Analogousto the smoothing parameter in a smoothing spline, shrinkage priors such asLaplace distribution and Cauchy distribution are assumed in the Bayesianframework. The advantages of a Bayesian basis expansion model include:accommodation of the tail development, quantification of the predictive distributionand incorporation of prior knowledge. For model inference, we use Stan toimplement the no-U-turn sampler (NUTS) which is an automatically tuned HamiltonianMonte Carlo method. We apply the proposed model to a simulated run-off triangleto illustrate the advantages of basis expansion models and to a real run-offtriangle data from WorkSafe Victoria to estimate the outstanding unpaid

claims liability of the doctor benefit.

【报告人简介】高光远, 现为澳洲国立大学统计学博士研究生,预计于20166月获博士学位,研究方向为保险精算。

Baidu
map