学术报告
报告题目:Multilinear Low-Rank Vector Autoregressive Modeling via Tensor Decomposition
报告人:练恒 香港城市大学数学系 副教授 博士生导师
报告时间:2018年9月13日 (周四) 上午10: 00
欢迎感兴趣的老师和研究生参加!
报告题目:Multilinear Low-Rank Vector Autoregressive Modeling via Tensor Decomposition
报告人:练恒 香港城市大学数学系 副教授 博士生导师
报告时间:2018年9月13日 (周四) 上午10: 00
报告地点:博识楼434室
报告摘要:The VAR model involves a large number of parameters so it can suffer from the curse of dimensionality for high-dimensional time series data. The reduced-rank coefficient model can alleviate the problem but the low-rank structure along the time direction for time series models has never been considered. We rearrange the parameters in the VAR model to a tensor form, and propose a multilinear low-rank VAR model via tensor decomposition that effectively exploits the temporal and cross-sectional low-rank structure. Effectiveness of the methods is demonstrated on simulated and real data.
欢迎感兴趣的老师和研究生参加!