报告题目:Quantile Regression Modeling of Latent Trajectory Features with Longitudinal Data
报告人:马慧娟
报告时间:2019年4月26日(本周五)上午9:30
报告地点:博识楼434室
报告摘要: Quantile regression has demonstrated promising utility in longitudinal data analysis. Existing work is primarily focused on modeling cross-sectional outcomes, while outcome trajectories often carry more substantive information in practice. In this work, we develop a trajectory quantile regression framework that is designed to robustly and flexibly investigate how latent individual trajectory features are related to observed subject characteristics. The proposed models are built under multilevel modeling with usual parametric assumptions lifted or relaxed. We derive our estimation procedure by novelly transforming the problem at hand to quantile regression with perturbed responses and adapting the bias correction technique for handling covariate measurement errors. We establish desirable asymptotic properties of the proposed estimator, including uniform consistency and weak convergence. Extensive simulation studies confirm the validity of the proposed method as well as its robustness. An application to the DURABLE trial uncovers sensible scientific findings and illustrates the practical value of our proposals.
马慧娟,华东师范大学经济与管理学部统计交叉科学研究院助理教授,2015年在中国科学技术大学获得统计学博士学位,博士期间曾经访问香港大学和上海财经大学。2015年至2018年在美国埃默里大学(Emory University)从事博士后研究工作。主要研究方向包括生存分析复杂数据分析,分位数回归模型,非参数与半参数模型等。在包括国际统计学杂志《Biometrics》和《Computational Statistics and Data Analysis》上发表学术论文十余篇。
报告人简介:
马慧娟,华东师范大学经济与管理学部统计交叉科学研究院助理教授。2015年在中国科学技术大学获得统计学博士学位。2015—2018年在美国 Emory University 从事博士后研究。读博士期间,曾经访问香港大学和上海财经大学。
马慧娟博士主要从事生物统计,分位数回归模型等领域的研究。先后参与美国National Institutes of Health项目,国家基金委自然科学基金重点项目和面上项目等科学项目。在包括国际著名统计学杂志《Biometrics》 和《Computational Statistics and Data Analysis》上发表学术论文十余篇。